Stacked generalization: an introduction to super learning
نویسندگان
چکیده
منابع مشابه
Stacked Generalization: An Introduction to Su- per Learning
Stacked generalization is an ensemble method that allows researchers to combine several different prediction algorithms into one. Since its introduction in the early 1990s, the method has evolved several times into what is now known as “Super Learner”. Super Learner uses V -fold cross-validation to build the optimal weighted combination of predictions from a library of candidate algorithms. Opt...
متن کاملStacked Generalization Learning to Analyze Teenage Distress
The internet has become a resource for adolescents who are distressed by social and emotional problems. Social network analysis can provide new opportunities for helping people seeking support online, but only if we understand the salient issues that are highly relevant to participants personal circumstances. In this paper, we present a stacked generalization modeling approach to analyze an onl...
متن کاملStacked generalization
This paper introduces stacked generalization, a scheme for minimizing the generalization error rate of one or more generalizers. Stacked generalization works by deducing the biases of the generalizer(s) with respect to a provided learning set. This deduction proceeds by generalizing in a second space whose inputs are (for example) the guesses of the original generalizers when taught with part o...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملIssues in Stacked Generalization
Stacked generalization is a general method of using a high-level model to combine lowerlevel models to achieve greater predictive accuracy. In this paper we address two crucial issues which have been considered to be a `black art' in classi cation tasks ever since the introduction of stacked generalization in 1992 by Wolpert: the type of generalizer that is suitable to derive the higher-level m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Epidemiology
سال: 2018
ISSN: 0393-2990,1573-7284
DOI: 10.1007/s10654-018-0390-z